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Abstract—ICU readmissions are costly and most of the early
ICU readmissions in the United States are potentially avoidable.
After the US Govts push towards reducing avoidable readmis-
sions, there has been a surge in research and analyses for
reducing the readmission rates. Widespread adoption of Elec-
tronic Health Records(EHRs) has made large amount of clinical
data available for analysis. It has provided new opportunities to
discover meaningful data-driven characteristics and implement
machine learning algorithms. Sequential characteristics present
in EHR data can be harnessed using state-of-the-art deep
learning algorithms. While there has been rapid adoption of
deep models in many domains, in Healthcare sector however,
their adoption has been slow owing to lack of interpretability of
these black-box models. Hence, many clinical applications still
prefer simple but interpretable machine learning models. In this
project, we have implemented a Knowledge-Distillation approach
called Interpretable Mimic Learning for predicting 30-day ICU
readmissions. Using this approach, the knowledge of deep models
can be transferred to simple and interpretable models and we
can combine accuracy and sequential learning of deep models
with interpretability of simple models.

Keywords—ICU Readmissions, Deep Learning model, Inter-
pretability, RNN, LSTM.

I. INTRODUCTION

An Intensive Care Unit (ICU) is a special unit in hospitals
where people with severe and life-threatening illnesses and
injuries are transferred to be provided with critical and inten-
sive treatment. After specific criteria are met, the patients are
discharged from ICUs and returned to their wards. Intensive
care is expensive[2, 8, 18, 20], and accounts for around 30%
of total hospital costs and 1% of the US gross national product
[18, 20]. This calls for prudent decision making regarding
discharging patients from ICUs. If patients are discharged
prematurely, it may result in inadequate levels of monitoring
as well as early readmissions to ICUs [8, 7, 19, 14]. Therefore,
predicting 30-day ICU readmission of patients would not
only strengthen clinical decision making about whether a
patient should be discharged from the ICU, but can also save
significant amount of treatment costs. Widespread adoption of
Electronic Health Records (EHR) by the hospitals in over last
10 years has provided a great opportunity to develop clinical
decision support systems by analyzing digital data of patient
vitals, lab results, demographics and past diagnoses.
EHR data can be represented as temporal sequences of high-
dimensional clinical variables where the sequence ensemble
represents the documented content of medical visits from a
single patient. When dealing with sequential features, simple
machine learning models like logistic regression and deci-

sion trees summarize them into aggregate features, ignoring
the temporal and sequential relationships among the feature
elements. Although recurrent neural networks (RNN) have
been successfully applied in modeling sequential EHR data[16]
to predict diagnoses and model encounter sequences[9, 5]
but the outputs of such models are difficult to interpret.
Following the recent progress in deep learning, researchers
and practitioners of machine learning are recognizing the
importance of understanding and interpreting what goes on
inside these black box models. Many attempts have been
made to directly interpret the outcome of recurrent neural
networks in the fields of speech recognition and translation,
and these powerful models are also found to be very useful
in the applications involving sequential data [13]. However,
adoption has been slow in applications such as health care,
where practitioners are reluctant to let an opaque system make
crucial clinical decisions. Considering the power of RNNs
for analyzing sequential data/long-term temporal properties
and to overcome the trade-off between interpretability and
accuracy, we have implemented a Knowledge-Distillation Ap-
proach [11] for predicting 30-day ICU readmissions, which
preserves RNNs accuracy and sequential modelling ability
while allowing a higher degree of interpretation. This is
achieved by using a student-teacher learning model called
Interpretable Mimic Learning proposed by [4] in which a slow
but accurate deep model(teacher model) learns complex and
sequential features and transfers this knowledge to a fast and
interpretable model. This is achieved by using soft prediction
scores of the deep/teacher model as target labels while training
the student/interpretable model. After multiple experiments
and training our models using this approach, we generate
interpretable results of predicting ICU readmissions, which
may help clinicians in making better clinical decisions and
thus reducing the occurrence of early readmissions.

II. RELATED WORK

Our work is built on top of a rich body of previous work on
interpretable machine learning models. Choi et al. (2016) [6]
stated that traditionally choice is made in between accuracy of
complex black-box models such as recurrent neural networks
(RNN) and interpretability of less accurate traditional models
such as logistic regression. Papers have been published stating
this trade-off between accuracy and interpretability [12, 3].
The most popular notions of interpretability hinge upon the
intelligibility of the features (Lipton, 2016)[15]. Simple models
like decision trees and logistic regression produce results that
are interpretable [21] by humans but they ignore the temporal



relation among features. Therefore the model accuracy is
not sufficiently high. Complex models like RNNs which are
known to give good results for sequential data often have
limited interpretation due to their complex structure. This
tradeoff poses challenges in Health care where both accuracy
and interpretability are important. Interpretability is important
to develop trust upon decisions[17]. To alleviate this trade-
off, Che et al. (2016) [4] proposed a simple yet power-
ful knowledge-distillation approach called interpretable mimic
learning for interpretable deep models for clinical outcome
predictions. They used an XGBoost model to learn the soft
labels produced as outputs from the LSTM and deep neural
networks. Our contribution through this project is to implement
the same approach for the problem of early prediction of ICU
readmissions by training models on Electronic Health Records
(EHR) data.

III.PROPOSED MODEL

In this project we have implemented a Knowledge Distillation
[11] approach, also called mimic learning [1], which involves
training a large, slow, but accurate model and transfer its
knowledge to a much smaller, faster, yet still accurate model.
This architecture named interpretable mimic learning by [4]
consists of a teacher model and a student model wherein
teacher model learns complex features and transfers the knowl-
edge to student model through their soft output labels. These
soft labels are the real valued output of the teacher model,
whose values ranges in [0, 1]. The intuition behind why this ap-
proach works is that soft labels from the teacher model usually
contain more information than the original hard labels(0/1).
These soft labels may also contain information pertaining to
sequential relationships among features. When another model
is trained using these soft labels, they may also learn the
complex knowledge already learned by teacher model. The
final predictions are made using student model’s parameters
learned from the knowledge of the teacher model. The teacher
and student layers of this framework are discussed with more
details in following section.

A. Teacher/Deep Layer

There are two types of features in our input data. The input
data consists of time series data as well as static data. The
LSTM model of the deep/teacher layer accepts the temporal
EHR data XT as input and produces soft labels yTs which are
the predictors of whether the patient was readmitted to the ICU
within 30 days. Considering the fact that LSTM performs well
on sequential data, we have trained it using temporal features in
addition to a DNN model which was trained on static features
XS to capture the inherent relationship between them and the
state of being readmitted or not. The soft labels of LSTM yTs

and DNN ySs are then combined using specific weights (based
on accuracy) and then fed as output labels to the student model
during training.

B. Student/Interpretable Layer

As the student model, we used XGBoost which is a
gradient boosted tree. Instead of training it on hard labels,
it is trained on soft labels yS produced by the deep/teacher
model as has been shown in 1.

Fig. 1. Model Pipeline.

IV.DATA AND METHODS

A. Data Collection

The ICU data in MIMIC-III were collected between 2001
and 2012 at Beth Israel Deaconess Medical Center, Boston,
MA, USA was used a data source for this analysis??. It
consists of 58,000 de-identified hospital admissions for 38,645
adults and 7,875 neonates. There were 34005 unique patients
with ICU admissions. Among the adults, 11.9% of the adults
met our criterion of being readmitted within 30 days. Figure
2 shows the distribution of time differences between two
consecutive admissions to ICU which resulted in readmission
because of being less than 30 days.

Fig. 2. Age distribution of patients with two or more ICU readmission.

We have analyzed the Patients, the ICUStays, the Labevents
and Chartevents tables of MIMIC-III database for potential
predictor variables.

1) Data Processing:

In preparing the dataset we came across many obstacles
because of its huge size and our computational limitations
of our systems. Hence, instead of working on entire feature



range, we choose subset of features. For temporal features,
we selected 17 variables generated from the Chartevents table
of the MIMIC-III database as described by Harutyunyan,et al
[10]. We generated time-series data files for each ICU stay
ID (unique identifier for each ICU stay). We also identified
outliers and corrected them within valid range specified by
[10].

For static features, we selected 83 most frequently mea-
sured variables from the Labevents and the Patients tables of
the MIMIC-III database. These features included demographic
details e.g. age, gender marital status, lab results and severity
scores e.g. SAPSII, SARS, OASIS. Static features from the
Labevents table were generated by averaging values of tempo-
ral observations.

2) Handling Missing Data:

Transforming database tables into suitable time-sequenced
files generated many missing values. These missing values
were first imputed using forward filling and then mean-
imputation afterwards. The intuition behind using forward-
filling approach was that clinical variables are usually recorded
at rates proportional to how quickly they are expected to
change. So when a variable is absent, it is usually because
clinicians believe it to be stable. [16].

Fig. 3. Missing data imputation for Heart Rate

B. Methods

The pipeline consists of two major steps. First is training
the teacher model and later training the student model based
on the teacher model. Training teacher model itself consists of
two parts. One of them is LSTM and the other one is DNN.
These two models work on different parts of the data. LSTM
works on the time series data while the DNN works on the
static data such as age and gender. Once the Teacher model is
trained, its soft labels are used as labels for training the student
model. An advanced version of gradient boosting trees named
XGBoost is used as the student model.

1) LSTM:

Long Short-Term Memory (LSTM) is a recurrent neural
network for sequential data handling. It is used to avoid
the vanishing gradient problem which is prevalent in other
recurrent neural network architectures. Standard structure of an
LSTM block contains input, forget and output gates. Temporal
features are fed as input to this LSTM and soft label Yt is seen
as the output.

2) DNN:

Deep neural network is simply a feedforward network with
many hidden layers. Each layer contains multiple perceptron
units with sigmoid activation functions. We have used two
hidden layers for this project. Static features are fed as input
to this DNN and soft label Ys is seen as the output.

3) XGBoost:

XGBoost uses Gradient boosting, which is a method which
takes an ensemble of weak learners, usually decision trees, to
optimize a differentiable loss function by stages. It combines
weak learners into a single strong learner in an iterative
fashion. XGBoost is short for Extreme Gradient Boosting. The
two reasons which led us to use XGBoost were mainly its good
execution speed as well as its better performance.

V. EXPERIMENT AND RESULTS

We performed binary classifications tasks on this dataset using
the 3 models in the pipeline.

1) LSTM Model:

The model contained single LSTM layer with 256 neurons,
dropout probability of 0.25 and sigmoid activations. We ran the
model for 1 epoch with batch size of 8. Since, the dataset was
huge, we split it into distinct files for each ICU stay ID and
used Python Generator to fit the model on data batch-by-batch.
Adam optimizer was used with learning rate of 0.001 and beta
of 0.5. The LSTM model acheived an AUROC of 0.526 as
shown in 4.

Fig. 4. AUROC curve for temporal features.

2) DNN Model:

The DNN model is composed of three layers with 80, 40
and 20 neurons respectively. We also used a dropout of 0.10,
Adam as optimizer and sigmoid activation. The DNN model
acheived AUROC of 0.705 as shown in 6.

Fig. 5. AUROC curve for static features.



3) XGBoost Model:

We used grid searching to find the optimum hyper-
parameters for the models. As our baseline model, XGBoost
model was first trained on hard output labels (0,1) and achieved
AUROC of 0.704. Then we trained XGBoost using soft labels
to implement mimic-learning approach. XGBoost trained using
soft labels achieved AUROC of 0.709. These soft labels were
obtained by summing soft outputs from LSTM and DNN
weighted by the accuracy of respective models.

Fig. 6. AUROC curve for XGB trained from soft labels.

Model AUROC
LSTM for temporal features 0.549
DNN for static feature 0.705
Baseline XGBoost 0.704
XGBoost with mimic learning 0.709

TABLE I. RESULTS FOR MODELS IN PIPELINE

4) Interpretability:

Our notion of interpretability is relative importance of
predictor features. We used XGBoost to generate feature scores
of different predictors fed into the model. XGBoost model
generated following list of 10 most important predictors.

Important Features
RDW
Bicarbonate
PTT
Creatine Kinase (CK)
Base Excess
pO2
saps (severity score)
Urea Nitrogen
Eosinophils
Sodium, Whole Blood

TABLE II. LIST OF MOST IMPORTANT FEATURES FOR READMISSION
PREDICTIONS

VI.CONCLUSION

We found that the performance of model trained on temporal
features was not as good as that of the model which was trained
on static features. One possible reason could be the irregularity
in the time-sequences because the time-series data of different
patients were not equally spaced so elements with specific
indices of the time-series data could carry different information
because of being captured at different times. Another reason
could be the fact that we have included comparatively lesser
number of predictor variables as temporal features. Analyzing
the list of important features and feature scores, we realized
that static features contributed more to the final prediction.
This could also be because of lower accuracy of LSTM model
compared to DNN model.

VII.FUTURE WORK

We believe that this study can further be improved by incorpo-
rating more predictors. We only included 17 important features
from the chartevents table of the MIMIC-III database owing to
computation limitations of our system. We also worked only
on 83 features selected from labevents table. In future, we plan
to include more features so that our deep model could learn
more hidden relationships between predictors and readmission
classification labels.

We also plan to introduce indicator variables to allow
the LSTM to differentiate actual from missing or imputed
measurements. We realized that high irregularities in the time-
sequences of measurements. We hope binning time-sequences
into regular sequences can further improve accuracy of LSTM
models.

The MIMIC database also consists of notes on each patient.
These notes contain valuable patient information which can
be mined for prediction and further improve robustness of our
prediction framework.
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