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Abstract—Immature ICU discharge leads to early readmis-
sion. Most of the ICU early readmissions can be avoided and
a significant amount of treatment costs can be saved. To be
able to successfully predict readmission, prediction model should
be interpretable so that the issues ignored while discharging
a patient from ICU are properly identified. Complex machine
learning models are not easily interpretable and consequently
they are ineffective for clinicians. Therefore, our aim was to
develop a prediction model which achieves a high discriminating
characteristic and also is interpretable enough so it can be used to
prevent the occurrence of early readmissions. In this project, we
separated feature selection and modeling steps to build a robust
predictive pipeline to predict 30-day all-cause ICU readmissions.
Our model identified 24 highly predictive features which at best
achieved prediction with 90% accuracy using simple logistic
regression.
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Learning.

I. INTRODUCTION

A. Motivation

An Intensive Care Unit (ICU) is a special unit in hospitals
where people with severe and life-threatening illnesses and
injuries are transferred from patient wards to provide them
critical and intensive treatment. After specific criteria are met,
the patients are discharged from ICUs and returned to their
wards. Intensive care is expensive[16, 4, 14, 1], and accounts
for around 30% of total hospital costs and 1% of the US
gross national product [16, 14]. Prudent decision making is
required regarding admitting patients to and discharging from
ICUs. If patients are discharged prematurely, it may result in
inadequate levels of monitoring as well as early readmissions
to ICUs [4, 2, 15, 12]. Internationally, 6-7% of people get
readmitted to the ICU within 72 hours of being discharged[11].
Although unplanned ICU readmissions are uncommon, they
have been linked to clinically adverse events, longer hospital
stays and higher mortality [4, 8]. The Centers for Medicare and
Medicaid Services (CMS) in the United States reported that
76% of hospital readmissions, which occur within 30-days,
are potentially avoidable[3]. To reduce avoidable readmission
rates, the Affordable Care Act of 2010 established the Hospital
Readmissions Reduction Program, under which CMS could
reduce payments to hospitals with high readmission rates [10].
Since then, hospitals and academics groups have been investing
resources in identifying patients with high risk of early read-
missions [5]. Therefore, predicting 30-day ICU readmission
of patients would not only strengthen clinical decision making
about whether a patient should be discharged from the ICU, but

can also potentially reduce high costs associated with ICUs.
Widespread adoption of Electronic Health Records (EHR) by
hospital over last 10 years has provided great opportunity
to develop clinical decision support systems by analyzing
digital data of patient vitals, lab results, demographics and
past diagnoses.

This work aims to provide an ensemble of different ma-
chine learning models trained from EHR data to provide pre-
dictions about whether patients are at risk of being readmitted
to ICU within 30-days from discharge. We also provide an
ensemble of different feature rankings models to generate a
selection of most important predictors contributing to these
predictions, making these predictions interpretable.

B. Related Work

In [7], Hoogendoorn et al. have compared two different
approaches regarding mortality prediction which were
predictive modeling and patient similarity approach. They
have shown that predictive modeling outperforms the other
one. They have used logistic regression on features picked
by L2-regularization as their model to predict mortality.
Consequently, we have used predictive modeling rather
than patient similarity approach to build our model. In [6],
Ghassemi et al. have shown that using latent topic features as
well as structured features achieves the best performance in
predicting the mortality. We have also included some latent
topic features such as SAPS, SAPS II, SIRS, OASIS and
LODS in our features to see if they show up in the top ranked
features which are used in training our model.

C. Hypothesis

Our two layered approach of feature selection and pre-
dictive model will lead to the identification of an accurate
predictive model with interpretable results. Selecting best
features prior to the prediction will add a better understanding
of how different risk factors contribute to the outcomes.

D. Model

In this project we will be using a two layer approach
to build our predictive model. Our final model consists of a
combination of a feature selection process and then prediction
process. Different feature selection methods known to work
best for this goal will be employed to produce multiple subsets
of features. Additionally, these subsets will be analysed to
understand their inherent relationships such as some specific
features being repeated in all of the subsets which shows



that they are more predictive. Once, we have good subsets of
features, we will use them to train various predictive models
and we will compare and analyze the results to reach the best
possible combination for predicting ICU readmission within
30 days for MIMIC III dataset.

Fig. 1. Model Pipeline.

II. DATA AND METHODS

The data analysis method aims to predict all cause 30 day ICU
readmissions through robust feature selection and comparative
modeling.

A. Dataset

The electronic health records collected between 2001 and
2012 at Beth Israel Deaconess Medical Center, Boston, MA,
USA was used a data source for this analysis. It consists
of de-identified 58,000 hospital admissions for 38,645 adults
and 7,875 neonates. There were 34005 unique patients with
ICU admissions. Among them, 5751 patients were readmitted
two or more times. Since we were interested to predict ICU
readmission within 30 days, we selected 1076 adult patients
who had second ICU readmission record with less than 30
days. Figure 2 shows the readmission days distribution among
the patients with two or more readmissions within 30 days.
We analyzed demographics, laboratory events, chart events,
and severity scores for potential predictor variables. All the
available features for demographics and labortory events were
used, while 20 features from charts events were selected based

Fig. 2. Age distribution of patients with two or more ICU readmission.

on previous work [13]. Features with more than 25% NAs
were removed due to missing data. Table 1 describes a subset
of 168 predictors collected from the database. Numerical
variables were mean imputated while categorical variables
were imputated with proportional distribution. Additionally,
correlation analysis was conducted and 45 features with cor-
relation 0.8 and higher were randomly removed resulting in
a final modeling dataset with 123 features. Similarly,50:50
control-case sampling from the original dataset was conducted
to randomly select 1076 patients with no readmissions.

Group Predictors
Demographics Age, Sex, Marital Status
Laboratory Events Urea, Platelets, Magnesium, Albumin,

Calcium, and others totaling 753 fea-
tures

Charts Events RespRate, Glucose, HR, SysBP, DiasBP,
temp

Severity Scores SAPS, SAP-II, SOFA

TABLE I. SUBSET OF 168 PREDICTORS USED FOR FEATURE
SELECTION.

B. Methods

The analysis pipeline consists of four major steps- feature
selection, feature ranking, feature analysis, and comparative
modeling.

1) Feature Ranking

To rank all the predictive features, we used a recursive fea-
ture elimination(RFE) algorithm [9]. RFE uses the coefficients
of a linear model to select features by recursively removing
the least important features from the model. We used three
different models - Logistic Regression, Linear Support Vector
Machine, and XGBoost classifier along with RFE to produce
feature ranking sets. Additionally, we used a Least Absolute
Deviations Basis Function and optimized the model using sum
of squared to obtain a ranking for each feature based on its
coefficients. KMeans clustering was used to determine the
parameter(number of center) of the basis function (Figure 2).
Finally, we had four sets of feature ranking using the above
approaches. For each feature v in each model m was given



equal weights and its rank across all models n were summed
to obtained a final feature ranking fv as following:-

fv =

n∑
i=1

mi(v)

n

The feature with the lowest value is ranked as the most
important feature.

Fig. 3. KMeans clusering to optimize centers for feature selection using basis
function.

2) Feature Selection

Ranked features obtained from the feature ranking analysis
were used in a step wise Logistic Regression model to calculate
the accuracy for adding a new featured in the model. Figure 4
shows the accuracy on validation set for the increasing number
of features in the model. Top 24 features were selected as
the best features based on the flattening of accuracy scores
(Figure 3). Table II shows these features. Here, we note that
many features derived from the same group were present, for
example both minimum and maximum value for glucose were
selected in the top 24 list.

Predictors
urea-n-max, glucose-min, sysbp-
min, glucose-max, temp-max,
Calcium-Total-max, hr-mean, urea-
n-min, Chloride-var, sysbp-max,
MCHC-min, PlateletCount-min,
CalculatedTotalCO2-max, Chloride-
min, PlateletCount-mean, Chloride-
max, MCHC-mean, PlateletCount-var,
Sodium-max, WhiteBloodCells-mean,
Potassium-min, Glucose-min, Calcium-
Total-var, MCHC-var

TABLE II. TOP 24 FEATURES SELECTED USING FEATURE SELECTION

The correlation analysis of the 24 features identified from
the feature selection process showed that these features were
highly uncorrelated with each other.

3) Feature Analysis

We compared the top 24 features obtained from the feature
selection procedure to the features selected by lasso (least
absolute shrinkage and selection operator) regression. 7 out of
24 feature selected (alpha-0.033, accuracy-0.8) by lasso were

Fig. 4. Step wise feature selection from ranked features in the model.

Fig. 5. Correlation plot of top 24 features identified.

present in the top 24 features list. This shows that about 30 per-
centage of features selected in our analysis were also selected
independently by lasso analysis. This similarity highlights
the accuracy of feature selection analysis and the importance
of these common features in the prediction. These common
features were - sysbp-min, Calcium-Total-max, Sodium-max,
Chloride-min, Glucose-min, Potassium-min, MCHC-min.

Fig. 6. Comparison between features obtained from LASSO and feature
selection analysis.



4) Comparative Modeling

In this section, we used top 24 features to train three
different models to predict re-admissions. We used a simple
model as well as more complex and nonlinear models to
carry out the prediction task. As our simple predictor, we
used logistic regression and as our complex models we used
XGBoost as well as SVM.
We used grid searching to find the optimum hyper-parameters
of the models. It should be noted that the cross validation
process of each specific value of the grid searching was carried
out on the training set and the test set was set aside to measure
the performance of the models. In Figure 7, we have shown
the grid search results for different hyper-parameter values of
SVM and Logistic Regression. The results of XGBoost grid
searching could not be shown because of having 3 dimensions.

Fig. 7. Results of SVM and logistic regression grid searching to find the
optimum hyperparameters.

Afterwards, we trained our model using the optimum
hyper-parameters and whole training set. The models were

then tested on the testing set and ROCs where computed and
plotted as can be seen in Figure 8 .

Fig. 8. ROC of XGBoost, SVM and Logistic Regression using 24 top features
of the data.

It should also be noted that the red points on the ROC
curves correspond to the best thresholds when maximizing
with respect to fscore.

III.CONCLUSION

As can be seen, our model achieves a very high accuracy even
using a simple model namely Logistic Regression. In addition
to a high discriminating ability, our model is interpretable
because of determining the top features before training our
model. Figure 9 shows the distribution of values for each of
top 24 features for readmission patients and non-readmission
patients. The result shows that there is no significant difference
between the marginal distributions of top 24 features in read-
mitted and non-readmitted patients. This result suggests that
the difference lies in the conditional distribution of the features.
Put another way, the difference between being readmitted and
not being readmitted is due to the difference between the
combinations of the values for different groups, given the
marginal distributions are the same. This difference can simply
be captured by a linear model such as Logistic Regression.

IV.FUTURE WORK

This study can be further improved by incorporating the
following steps. First, we only included 15 important features
from the charts event table due to the size limitation of
our system. If we include all the features from the chart
events table just like lab events in our model then it is likely
that we will see improvement in our modeling. Second, the
MIMIC database also consists of notes on each patient. This
notes contain valuable information which can be used in the
prediction. Thirdly, we can further expand this model into a
time-series model where we can separately analyze data for



Fig. 9. Distribution of top 24 features for readmission and non-readmission
patients.

each day and build a model which can predict readmission
changes of a patient every day. Finally, we can also develop
our predictive modeling into a real time modeling which keeps
updating with the availability of new information and we can
predict readmission probability of each patient at any time.
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